Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling
نویسندگان
چکیده
This study aimed to investigate the role of focal adhesion kinase (FAK) signaling in the inhibitory effects of black rice anthocyanins (BRACs) on human epidermal growth factor receptor-2 (HER-2)-positive human breast cancer cell metastasis, using the MCF-10A, MCF-7 and MDA-MB-453 cells. BRACs exerted an anti-metastatic effect on the HER-2-positive breast cancer cells. The effects of BRACs on the proliferation of the MDA-MB-453 cells were examined by cell counting kit-8 assay. A wound-healing assay was used to examine the effects of BRACs on the migration of the breast cancer cells. BRACs interrupted migration and invasion. BRACs decreased the migration distance of the HER-2-positive human breast cancer cells, MDA-MB-453, by 37% compared with the cells in the untreated group. They also reduced the number of invading MDA-MB-453 cells by 68%. In addition, BRACs exerted an inhibitory effect on epithelial-mesenchymal transition. Western blot analysis revealed that BRACs decreased the phosphorylation of FAK, cSrc and p130Cas. The FAK inhibitor, Y15, was also used to further evaluate the role of FAK signaling in the anti-metastatic effects of BRACs on MDA-MB-453 cells. The results of western blot analysis revealed that BRACs increased the expression of the epithelial marker, E-cadherin, and decreased the expression of the mesenchymal markers, fibronectin and vimentin, in the MDA-MB‑453 cells. In addition, BRACs decreased the interaction between HER-2 and FAK, FAK and cSrc, cSrc and p130Cas, and between FAK and p130Cas. These results suggest that BRACs suppress the metastasis of HER-2-positive breast cancer in vitro, and that the cSrc/FAK/p130Cas pathway plays a vital role in this inhibitory effect.
منابع مشابه
Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملSilencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro
Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...
متن کاملMelatonin Represses Metastasis in Her2-Postive Human Breast Cancer Cells by Suppressing RSK2 Expression.
The importance of the circadian/melatonin signal in suppressing the metastatic progression of breast and other cancers has been reported by numerous laboratories including our own. Currently, the mechanisms underlying the antimetastatic actions of melatonin have not been well established. In the present study, the antimetastatic actions of melatonin were evaluated and compared on the ERα-negati...
متن کاملInhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer
Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated tha...
متن کامل14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling
BACKGROUND 14,15-epoxyeicosatrienoic acid (14,15-EET) is an important lipid signaling molecule involved in the regulation of tumor metastasis, however, the role and molecular mechanisms of 14,15-EET activity in breast cancer cell epithelial-mesenchymal transition (EMT) and drug resistance remain enigmatic. METHODS The 14, 15-EET level in serum and in tumor or non-cancerous tissue from breast ...
متن کامل